液體電介質的擊穿機理
液體電介質主要有天然礦物油和人工合成油以及蓖麻油(植物油)。目前用得最多的是從石油中提煉出的礦物油,通過不同程度的精煉,可得到分別用于變壓器、斷路器、電纜及電容器等高壓電氣設備中的各種液體電介質,相應稱為變壓器油、電纜油和電容器油。液體電介質除用作電氣設備的絕緣介質外,還用作冷卻介質(如在變壓器中)或滅弧介質(如在斷路器中)。
目前人們對液體電介質擊穿機理的研究遠不及對氣體電介質的研究那么充分,這是因為純凈的液體電介質和通常含有某些雜質(如水分、空氣、微粒及纖維等)的液休電介質的擊穿特性存在著很大差異。液體電介質分為兩大類,即純凈的和工程用的(不很純凈的),在高電壓工程中應用最多的液體電介質是各種各樣的絕緣油,其中尤以變壓器油使用的最為廣泛,故在下文的討論中,將以變樂器油為主要對象,
一般認為,變壓器油的擊穿存在兩種形式:一種是純凈的變壓器油主要發生電擊穿,另一種是含石水蒸氣或其他懸浮雜質的工程用變壓器油則主要發生熱擊穿。
4.4.1 純凈液體電介質的擊穿機理
純凈液休電介質的擊穿機理與氣體電介質的擊穿機理類似。因為在液體電介質中,也總是會由于外界的高能射線或局部強電場的作用或陰極的強電場發射等原因,使介質中存在有一些初始電子,這些電子在電場的作用下,向陽極作加速運動,產生碰撞電離,形成電子崩,導致液體電介質的擊穿。但由于液體電介質的密度遠較氣體的大,電子的自由行程很小,所以純凈液體電介質的擊穿強度大大超過氣體的擊穿強度(約大一個數量級)。
4.4.2 含氣泡液體電介質的擊穿機理
當液體電介質中存在氣泡時,在交流電壓下,氣泡中的電場強度與油中的電場強度按各自的介電常數成反比分布,從而在氣泡上分配到較大的場強,但氣體的擊穿場強又比液體電介質的擊穿場強低得多,所以氣泡必先發生電離。氣泡電離后溫度上升,體積膨脹,密度減小,促使電離進一步發展。電離產生的帶電粒子撞擊油分子,使之又分解出氣體,導致氣體通道進一步擴大。如果許多電離的氣泡在電場中排列成連通兩電極的所謂“小橋",擊穿就可能在此通道中發生。
氣泡擊穿理論依賴于氣泡的形成、發熱膨脹、氣體通道的擴大并排列成“小橋",有熱的過程,所以屬熱擊穿的范疇。
4.4.3 工程用變壓器油的擊穿機理
氣泡擊穿理論可以推廣到由其他懸浮雜質引起的擊穿,比較好地解釋工程用變壓器油的擊穿過程。
工程用變壓器油屬于不很純凈的液體介質,即使將極為純凈的油注入電氣設備中,也難免在注入過程中會有雜質混入。比如,注油時油的攪動會有空氣混入;油與大氣接觸時也會發生氧化,并從中吸收氣體和水分:運行中油本身也會老化,分解出氣體、水分和聚合物;以及各種纖維從固體絕緣材料上脫落到油中,使油中總含有少量的雜質,等等。這些雜質的介電常數和電導與油本身的相應參數不相同,這就必然會在這些雜質附近造成局部強電場。在電場力的作用下,這些雜質很容易沿電場方向極化定向,并排列成雜質“小橋",如果雜質“小橋"貫穿于兩電極之間,由于組成“小橋"的纖維及水分的電導較大,發熱增加,促使水分汽化,形成氣泡“小橋"連通兩極,導致油的擊穿。即使雜質“小橋"尚未貫通兩極,但在各段雜質“小橋"的端頭,其電場強度也會增大很多,使該處的油發生電離而分解出氣體,使“小橋"中氣泡增多,促使電離過程增強,最終也將出現氣泡“小橋"連通兩極而使油擊穿。由于這種擊穿依賴于“小橋"的形成,所以也稱此為解釋變壓器油熱擊穿的所謂“小橋"理論。
變壓器油也具有自恢復絕緣的特性,這是因為由“小橋"引起的火花放電會使纖維燒毀,水滴汽化,油的擾動以及油具有一定的滅孤能力等,使得電介質的絕緣強度得以恢復。
4.4.4變壓器油的電氣強度
由于液體電介質擊穿理論很不成熟,只能在一定程度上定性地解釋其擊穿的規律性,因此對變壓器油的電氣強度也需通過試驗予以確定。
工程上用標準油杯按照標準試驗方法來測定變壓器油的工頻擊穿電壓。我國采用的標準油杯如圖4-5所示。圖中,極間距離為2.5mm,電極是直徑為25mm、厚度為4mm的一對圓盤形銅電極,電極與油杯杯壁及試油液面的距離不小于15mm。對為了減弱其邊緣效應,電極的邊緣被加工成半徑為2.5mm的半圓,使電極間的電場近乎均勻。
試驗時由于油擊穿的分散性,應取5次擊穿電壓的平均值,且每次擊穿電壓與平均值的偏差不超過+25%;否則應繼續試驗,直到獲得5個不超過平均值士25%的數值為止。以這5次擊穿電壓的平均值作為被試油樣的工頻擊穿電壓值(kV),或換算成擊穿場強(kV/cm)。
我國規定不同電壓等級電氣設備中變壓器油的電氣強度應符合表4-2的要求。
由表4-2可見,變壓器油在標準油杯和標準試驗條件下的擊穿電壓在20~60kV之間,相應的擊穿場強有效值為80~240kV/cm,約為空氣擊穿場強的4~10倍。順便指出,工程用變壓器油作冷卻介質時,油的凝固點至關重要,因此按照油的凝固點不同將油分為各種不同的牌號。比如,25號變壓器油即其凝固點溫度為-25℃。由此可見,高寒地區運行的變壓器應選用高牌號的變壓器油。
表4-2 不同電壓等級電氣設備中變壓器油的電氣強度要求
額定電壓 等級(KV) | 用標準油杯測得的工頻擊穿 電壓有效值(KV) | 額定電壓 等級(KV) | 用標準油杯測得的工頻擊穿 電壓有效值(KV) | ||
新油,不低于 | 運行中的油,不低于 | 新油,不低于 | 運行中的油,不低于 | ||
15級以下 | 25 | 20 | 330 | 50 | 45 |
20~35 | 35 | 30 | 500 | 60 | 50 |
63~220 | 40 | 35 |
4.5 影響液體電介質擊穿電壓的因素
4.5.1 水分及其他雜質
水分在變壓器油中可以三種狀態存在:①以分子狀態溶解于油中;②以小水珠狀態懸浮于油中;③水分過多,以至于有水分沉淀在油的底部。實驗表明,以分子狀態溶解于變壓器油中的水分對油的擊穿電壓影響不大。對變壓器油的擊穿危害最大的是懸浮于油中的小水珠,因為這種小水珠在電場作用下會發生極化而沿電場方向伸長,并在極間排列成導電“小橋"。圖4-6為在標準油杯中測出的變壓器油的工頻擊穿電壓與含水量的關系。由圖可見,在常溫下,只要變壓器油中含有0.01%的水分,就會使油的擊穿場強下降到干燥時的15%~30%。當水分含量超過0.02%時,多余的水分即沉淀到變壓器油的底部,因此油的擊穿電壓不再降低。但是這種沉淀水對變壓器油的絕緣性能的危害不可忽視,因為沉淀狀的水隨著溫度及其他條件的變化隨時都可以轉化為懸浮狀的水分。
由“小橋"理論可知,其他固體雜質也會使油的擊穿電壓下降。特別是一些極性的纖維介質,極易吸潮,并沿電場方向極化而形成雜質“小橋",使油的擊穿電壓大大下降。然而,從油中分解出來的碳粒卻對油的擊穿電壓影響較小,所以在油斷路器中允許用油既作滅弧介質,又作絕緣介質。但是,碳粒的沉淀形成汕泥則易造成油中沿固體表面的放電,同時也影響散熱,然而,在沖擊電壓下,由于電壓作用時間極短,以至于雜質來不及形成“小橋",所以雜質對油的沖擊擊穿電壓的影響也不大。
4.5.2 電壓作用時間
電壓作用時間對油的擊穿電壓影響很大,擊穿電壓會隨電壓作用時間的增加而下降。電壓作用時間還會影響油的擊穿性質。如圖4-7 所示,當電壓作用時間極短(小于毫秒級)時,如雷電沖擊電壓的作用,則油的擊穿純屬電擊穿,擊穿電壓比較高,且擊穿電壓隨時間的變化規律與氣體介質的伏秒特性相似。當電壓作用時間大于毫秒級以后,則呈現為熱擊穿的性質,且隨著電壓作用時間的增長,擊穿電壓顯著下降。
4.5.3 電場的均勻程度
對于純凈變壓器油,如電場比較均勻則可以大大提高油的工頻擊穿電壓和沖擊擊穿電壓。對于含有雜質的變壓器油,由于其擊穿電壓主要取決于雜質“小橋"的形成,所以電場的均勻程度對擊穿電壓的影響相對減小。
4.5.4溫度的影響
變壓器油的擊穿電壓與油溫的關系比較復雜,隨電場的均勻程度、油的純凈程度以及電壓類型的不同而不同。
標準油杯中變壓器油工頻擊穿電壓有效值與溫度的關系如圖4-8所示。圖中,曲線1為純凈油,油溫升高,有利于碰撞電離,所以擊穿電壓略有下降;曲線2為有水分的油,視溫度對水分存在狀態的影響情況而異。比如;油溫從0℃開始升高,有利于懸浮狀的水滴在油中的溶解,所以擊穿電壓隨之升高。但油溫超過80℃,水分開始汽化,產生氣泡,則又會使油的擊穿電壓降低。由圖4-8可見,變壓器油溫在60~80℃范圍內,擊穿電壓出現最大值;油溫在0~5℃范圍內,全部水分轉化為乳濁狀態,導電“小橋"最易形成,出現擊穿電壓最小值;油溫低于0℃時,則水滴結成冰粒,油的密度變大,其擊穿電壓又會升高。
在極不均勻電場中,隨著油溫的上升工頻擊穿電壓稍有下降,水滴等雜質對極不均勻電場下變壓器油的工頻擊穿電壓影響較小,這是因為不均勻電場中的電暈會引起雜質的擾動。應該指出,不論在均勻電場還是不均勻電場中,隨著溫度的上升,沖擊擊穿電壓均單調地稍有下降,這可借助電子碰撞電離理論予以解釋。
4.5.5 壓力的影響
不論電場是否均勻,當壓力增加時,工程用變壓器油的工頻擊穿電壓都會隨之升高,只是在均勻電場中,這個關系更為明顯些。但如果將變壓器油中所含氣體處理干凈,則壓力對油隙的擊穿電壓就幾乎沒有什么影響了。分析認為,壓力的影響主要是因為變壓器油中所含氣體的放電電壓隨壓力的增大而增大,但壓力對油的擊穿電壓的影響遠不如氣體那樣顯著。
由于變壓器油中氣體等雜質不影響沖擊擊穿電壓,所以壓力也不影響沖擊擊穿電壓。
4.5.6 面積效應及體積效應的影響
與氣體電介質相類似,液體電介質的擊穿電壓也會受到面積效應的影響。也就是,當電極面積越大時,電極表面嚴重的突出物和一些影響擊穿電壓的偶然因素出現的概率也越大,因而會導致擊穿電壓下降。另外,與固體電介質類似,絕緣油的擊穿還會受到體積效應的影響。當油的體積增大后,絕緣缺陷出現的概率增大,導致擊穿場強降低。
4.5.7 變壓器油的老化
1.變壓器油老化的特征
變壓器油的老化可以大大降低油的擊穿電壓,油的老化主要是熱老化。以變壓器油為例,其老化具有下列特征:
(1)顏色逐漸深暗,從淡黃色變為棕褐色,從透明變為混濁。
(2)黏度增大,影響散熱;閃點降低;灰分和水分增多。
(3)酸價增加,油中所含的低分子酸量增加,腐蝕性增大。
(4)絕緣性能變壞,表現為電阻率降低,介質損耗增大,擊穿電壓降低。
(5)出現沉淀物,影響繞組的冷卻。
變壓器油老化的機理主要是油的氧化。新絕緣油在與空氣接觸的過程中逐漸吸收氧氣,初期吸收的氧氣與油中的不飽和碳氫化合物起化學反應,形成飽和的化合物,這段時期稱為初期。此后油再吸收氧氣,就生成穩定的油的氧化物和低分子量的有機酸(如蟻酸、醋酸等),也有部分高分子有機酸(如脂肪酸、瀝青酸等),使油的酸價增高。這種油對繞組絕緣和金屬都有較強的腐蝕作用,這段時期稱為中期。此后,絕緣油進一步氧化,油中酸性產物達一定濃度時,便產生加聚和縮聚作用,生成中性的高分子樹脂及瀝青等,使油呈混濁的膠凝狀態,最后成為固體的油泥沉淀。在此加聚和縮案過程中,同時析出水分,這段時期稱為后期。生成的油泥如沉淀在繞組上,將影響繞織的散熱。劣化到一定程度的油,就不能再繼續使用,用物理方法也不能使其恢復,必須予以更換,或另行再生處理。
由上可見,溫度是影響變壓器油老化的主要因素之一。試驗表明:當溫度低于60~70℃時,油的氧化作用很小,高于此溫度時,油的氧化作用就開始顯著了;此后,大約是溫度每增高10℃,油的氧化速度就增大1倍;當溫度超過115~120℃時,其情況又大有不同,不僅出現氧化的進一步加速,還可能伴隨有油本身的熱裂解,這一溫度稱為油的臨界溫度。隨著油的來源、成分和精煉程度不同,其臨界溫度也稍有差別。為此,在油的運行中或油的處理過程中(如加熱干燥等),都應該避免油溫過高,一般規定最高不允許超過115℃。
此外,光照和電場也都會加速變壓器油的老化。
2.延緩絕緣油老化的方法
(1)裝設擴張器。其作用是供油熱脹冷縮,使油與空氣接觸面減小,且擴張器內油溫較低,吸氧量小。例如在油擴張器中設置隔氣膠囊,則可供油自由脹縮,并將油與大氣隔絕。
(2)在油呼吸器通道中裝設吸收氧氣和水分的過濾器。用氯化鈣、硅膠、氧化鋁等吸收水分;用粉末狀的銅、氯化銨、純潔的鐵等吸收氧氣。
(3)用氮氣來排擠出油內吸收的空氣。有的變壓器或高壓套管采用密閉并充氮的方法來防止油的氧化。
(4)摻入抗氧化劑,以提高油的穩定性,抗氧化劑只有在新油或再生過的油中有效,因為它只能延長前述初期的時間,既不能阻止氧化過程的進行,更不能使已氧化的油還原。
(5)將已老化的變壓器油進行再生處理。
4.5.8 變壓器油流速的影響
在大型電力變壓器的實際運行中,由于強制油循環或者不同部位油溫差造成的自然對流,都使絕緣油處于流動狀態。油的流動會影響雜質“小橋"的形成,因而其擊穿特性與靜止狀態下有較大不同,如圖4-9所示。油流速的增加會阻礙“小橋"的形成,使得擊穿電壓有所升高。但當油流速進一步增大后,體積效應會起主導作用,即單位時間內通過高電場區域的油體積增大,出現絕緣缺陷的概率升高,導致擊穿電壓下降。
4.5.9 提高變壓器油擊穿強度的常用措施
油中雜質是降低油的工頻擊穿電壓的決定性囚素。因此,設法減少油中雜質,提高油的品質,是提高工程用變壓器油擊穿電壓的首要措施。
(1)通過過濾提高油的品質,常用的方法是采用加熱式真空過濾,可以有效地驅除油中所含的氣體、水分及其他固體雜質,
(2)在絕緣結構設計中采用對金屬電極覆蓋一層很薄(小于1mm)的固體絕緣層,覆蓋可以有效地隔斷雜質小橋連通電極,減小回路流經雜質小橋的電導電流,阻礙熱擊穿過程的發展。而且油的品質越差,此法提高擊穿電壓的效果越顯著。
(3)包絕緣層。如果把上述的覆蓋層加厚到幾毫米甚至幾十毫米的絕緣層,利用絕緣層的介電常數比油的大,可有效地使被覆蓋的電極附近的電場強度減弱,減少電極附近油的局部放電,從而提高油的擊穿電壓,
(4)采用極間障(絕緣屏障)。與提高氣隙擊穿電壓所使用的絕緣屏障相類似,在油間隙中也可以設置極間障來提高油隙的擊穿電壓。通常是用電工厚紙板或膠布層壓板做成,形狀可以是平板或圓筒,視具體情況而定,厚度通常為2~7mm。
極間障的作用:①阻隔雜質小橋的形成;②在不均勻電場中利用極間障一側所聚積的均勻分布的空間電荷使極間障另一側油隙中的電場變得比較均勻,從而提高油隙的擊穿電壓。
在油間隙中,有時甚至設置幾個極間障,可以使油隙的擊穿電壓提高更多。在變壓器和充油套管中經常采用多個極間障,如此處理可將油的擊穿電壓提高30%以上。
4.6組合絕緣的擊穿特性
高壓電氣設備絕緣必須具有優異的電氣性能外,還要求具有良好的熱性能、機械性能及其他物理化學性能,單一的電介質往往難以同時滿足這些要求,所以實際中絕緣一般采用多種電介質的組合。
4.6.1 組合絕緣的配合原則
電氣設備的絕緣通常都不是由單一的電介質所構成,而是由多種電介質組合而成。例如,變壓器的外絕緣是由套管的瓷套與周圍的空氣所組成,其內絕緣則是由紙、布帶、膠木筒、變壓器油等多種固體介質和液體介質組合而成。組合絕緣的電氣強度不僅取決于所用各種電介質的電氣特性,而且還與所用各種電介質相互之間的配合是否合理有密切關系,其配合原則如下:
(1)由多種介質構成的層疊絕緣,應盡可能使組合絕緣中各層介質所承受的電場強度與其耐電強度成正比。此時,使各種絕緣材料利用得合理、最充分,整個組合絕緣的電氣強度也最高。
例如,在直流電壓下,各層介質承受的電壓與其電導成反比;但在交流和沖擊電壓下,各層介質承受的電壓則與其介電常數成反比。因此,在直流電壓下應將電氣強度高、電導率大的絕緣材料用在電場強的地方;而在交流電壓下,應將電氣強度高、介電常數大的介質用在電場強的地方。顯然,這種配合有利于均勻電場分布,使原來電場強度較強的地方此時電場強度相對減小。
(2)在組合絕緣中,各部分的溫度也可能存在較大的差異,所以在設計組合絕緣結構時,還要注意溫度差異對各層介質的電氣特性和電壓分布的影響(因為溫度升高,介質的電導增大)。
(3)將多種介質進行組合應用時,應盡可能使它們各自的優缺點進行互補,揚長避短,從而使總體的電氣強度得到加強。例如,絕緣紙或紙板含有大量的空隙,所以在一般情況下紙的電氣強度是不高的,但通過真空干燥和用油浸漬后所形成的紙與油的組合絕緣卻可以使這兩種介質的優勢互補,大大提高整體的絕緣性能,其短時擊穿場強可高達500~600kV/cm,大大超過各自單一介質的電氣強度(油的擊穿場強為200kV/cm,紙的擊穿場強為100~150kV/cm)。這種油紙組合絕緣廣泛用于電纜、電容器、電容式套管和變壓器等電氣設備中。
(4)采取合理工藝,處理好每層介質的接縫及介質與電極界面的過渡處理。因為,疊層式組合絕緣有很多是每層由絕緣紙帶或膠帶進行纏繞,這時要求每層纏繞時要有一定的搭接長度(一般為50%,即上層帶的中間正好壓在下層帶的縫隙上),以充分排除氣隙,并防止沿絕緣帶的邊沿發生局部放電。在介質與電極的交界面上,由于電極表面的凹凸不平導致局部強電場,為此常常采用半導體屏蔽層作為過渡層以均勻電場,實現電場強度的平穩過渡,消除局部放電。
4.6.2組合絕緣中的電場
以兩種介質的組合絕緣為例,為了分析簡單起見,設電極形式為平行板電極,極間雙層絕緣的交界面可與等位面重合或與等位面斜交。
(1)雙層絕緣的交界面與等位面重合,如圖4-10所示,在平行板電極間。電場是均勻的,雙層介質的交界面別與等位相重合,這時兩層介質中的電場強度E1和E2分別為
式(4-11)和式(4-12)表明,在極間絕緣距離d=d1+d2不變的情況下,增大ε2時會使E2減小,但卻使E1增大,這一點進行組合絕緣設計時是值得注意的。比如,在電場比較均勻的油間隙中放置多個屏障會使油中的電場強度明顯增大。
(2)雙層絕緣的交界面與等位面斜交,在這種情況下,電場與界面之間的角度不是90°,因此電力線會在第二種介質中發生折射,如圖4-11所示。電力線入射角α1與折射角α2的關系為
圖4-12為此時電力線與等位面的分布示意圖,由圖可見,界面上某些地方(如P1點)的等位面受到壓縮,從而使這些地方的場強大大增加,這在絕緣設計時應予以注意。但另一方面在某些地方(如P2點)等位而受到擴展,使這一點的電場強度有所減小。因此,適當調節入射角和折射角亦可對絕緣結構的電場作某些調整。
4.6.3 油紙電纜絕緣的擊穿特性
1.工頻交流電壓下的擊穿特性
油紙電纜是典型的多層油紙組合絕緣。工作在交流電壓下的電纜,如果只采用均勻的介質,那么在靠近電纜芯線的內層絕緣所分配到的場強,會比靠近電纜護套側的外層絕緣所分配到的場強高得多。這樣,外層絕緣就不能得到充分利用。為此,高壓電力電纜的絕緣都是采用分階絕緣結構。例如,電纜的內層絕緣采用高密度的薄紙纏繞,這種紙的纖維含量高,質地致密,故介電常數較大,耐受場強也較大;外層絕緣則采用密度較低、厚度較大的紙纏繞,這種紙的介電常數較小,耐受場強也較小。適當設計分階絕緣的參數,可使各階絕緣強度具有接近相同的利用率。同時,在電纜芯線外及靠金屬護套的最外層絕緣層上加包一層半導體屏蔽層,以消除芯線和護套內壁粗糙突出處的電場集中,消除芯線凹槽油隙及護套內壁間隙上的電位差,使電纜絕緣的工頻耐壓和局部放電起始電壓大幅度提高。由于絕緣層的縫隙都互相交錯壓接,所以絕緣擊穿總是沿絕緣層呈階梯狀通過縫隙向絕緣深處發展,往往在軸向延伸很長一段距離后才完成,因此這種擊穿過程需要較長的時間。如果電壓作用時間不夠,就只能產生局部放電,或某幾層被擊穿而其余絕緣仍是完好的。
2.直流電壓作用下的擊穿特性
(1)在相同條件下,含有氣隙或氣泡的固體介質在直流電壓下單位時間內所產生的局部放電次數遠遠小于交流下的放電次數,因此介質在直流下局部放電所產生的破壞作用遠比交流下小,對于電纜絕緣亦是如此。圖4-13為油紙電纜的交流和直流擊穿場強與電壓作用時間的比較。由圖可見,直流電壓下短時擊穿場強為交流時的2倍以上,長時間擊穿場強則為交流時的3倍以上。
(2)在直流電壓下,絕緣只存在較小的電導損耗;而在交流電壓下,既有電導損耗,又有反復進行的極化所引起的極化損耗,使介質損耗大大增加,溫度升高,使擊穿電壓降低。
(3)在直流電壓下,油紙組合絕緣的直流電壓分布與油和紙的電導率成反比,而油浸漬過的紙的電導率遠小于油的電導率,所以紙中的電場強度遠大于油中的電場強度,面油浸漬過的紙的絕緣強度也遠高于油??梢?,在直流電壓下,油紙絕緣的電場分布是合理的,也是有利的。此外,絕緣的電導率與溫度密切相關,電纜芯線溫度比護套溫度高,隨著此溫差的逐漸增大,絕緣層中最大電場強度將由靠近芯線側向護套側轉移(由于電率隨溫度的變化而引起)。這樣,在直流電壓作用下的最大電場強度和最高溫度,不再像工頻交流電壓作用時那樣總是重合在絕緣的內側,而是分別錯開在絕緣的兩側,因此可以在一定程度上抑制熱擊穿的發展。
由于上述原因,使得同樣一根電纜在直流下的耐壓遠高丁其交流耐壓。采用油紙組合絕緣的電容器、套管亦是如此。
小 結
(1)固體電介質和液體電介質的絕緣強度一般比空氣的絕緣強度高很多。在實際的電氣設備中采用由固體和液體介質構成的組合絕緣具有更優良的絕緣特性。
(2)固體電介質的擊穿按其形成機理不同可分為電擊穿、熱擊穿和電化學擊穿。
(3)氣隙和潮氣是影響固體介質擊穿電壓的重要因素,因此應對固體介質進行真空干燥和浸油處理。
(4)固體電介質與氣體電介質不同,有機固體電介質會發生老化。根據老化的機理不同,可分為電老化和熱老化。老化的結果使固體電介質的擊穿電壓下降,使用壽命縮短。固體介質熱老化遵循8℃規則。
(5)液體電介質擊穿理論有電擊穿理論和熱擊穿理論,二者適合解釋不同品質的液體介質的擊穿。
(6)雜質(特別是氣泡、水分和纖維)是影響液體介質擊穿電壓的重要因素,因此要求對液體介質必須進行凈化處理和保持干燥。
(7)組合絕緣可以做到各種介質優勢互補,但要求設計必須遵從一定的原則,使不同介質有一個合理搭配和合理結構,才能充分發揮組合絕緣的優良特性。
電話
微信掃一掃